On the average reversal distance to sort signed permutations

¹**Thaynara Arielly de Lima** & ^{1,2}**Mauricio Ayala-Rincón** Departamentos de Matemática¹ & Ciência da Computação²

Authors funded by CAPES and CNPq

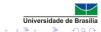
"11th Permutation Patterns"

Université Paris Diderot, July 2013

Thaynara Arielly de Lima & Mauricio Ayala-Rincón

2 Sorting signed permutations

- Breakpoint Graph
- Cycles in Breakpoint Graphs and cycles in permutations
- Our results
 - Searching the average



Reversals

Genome Rearrangement

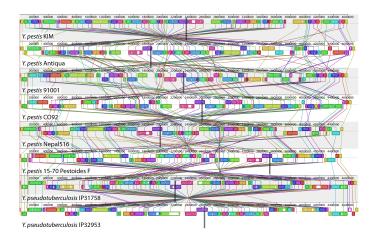


Figure: A genome alignment of eight Yersinia (Figure in [DMR08]).

Thaynara Arielly de Lima & Mauricio Ayala-Rincón

Average reversal distance

Reversals

Reversals

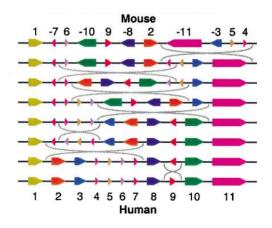


Figure: A most parsimonious rearrangement scenario for human and mouse X-chromosomes (Figure in [PT03]).

Universidade de Brasília

Reversals

Genome Rearragement Problem

Restricted to reversals...

Finding the MINIMUM number of reversals needed to transform a permutation into identity permutation.

Operation	Example	Complexity
Reversals on signed permutations	+1+2-5-4-3+6	Polynomial
	+1+2+3+4+5+6	
Reversals on unsigned permutations	12 <u>543</u> 6	$\mathcal{NP} ext{-hard}$
	12 <mark>345</mark> 6	

This work is based in sorting signed permutations by reversals.

Universidade de Brasília

Reversals

Average number of block interchange

Block Interchange	1 <mark>45</mark> 3 2 6	Polynomial
	1 <mark>2345</mark> 6	

Consider an unsigned permutation $\pi = \pi_1 \ \pi_2 \cdots \pi_n$

Miklós Bóna & Ryan Flynn [BF09] showed that:

$$a_n = \frac{n - \frac{1}{\lfloor (n+2)/2 \rfloor} - \sum_{i=2}^n \frac{1}{i}}{2}$$

where a_n = average number of Block Interchange needed to sort permutations of length n.

Universidade de

Consider $\pi = \pi_1 \pi_2 \cdots \pi_n$. Extend π by adding $\pi_0 = +0$ e $\pi_{n+1} = -0$. Associate to each π_i the pair $-\pi_i + \pi_i$.

+0 -2 +2 -3 +3 +1 -1 -4 +4 +5 -5 -0 Figure: Breakpoint Graph of permutation $\pi = +2$ +3 -1 +4 -5

 Introduction
 Breakpoint Graph

 Sorting signed permutations
 Cycles in Breakpoint Graphs and cycles in permutations

 Conclusion
 Our results

Definition (Breakpoint Graph)

The Breakpoint Graph $G(\pi)$ of a permutation π is a bi-colored graph with 2n + 2 vertices such that:

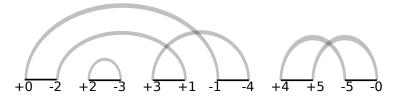
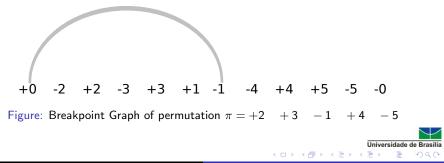


Figure: Breakpoint Graph of permutation $\pi = +2 + 3 - 1 + 4 - 5$

Definition (Breakpoint Graph)

The Breakpoint Graph $G(\pi)$ of a permutation π is a bi-colored graph with 2n + 2 vertices such that:



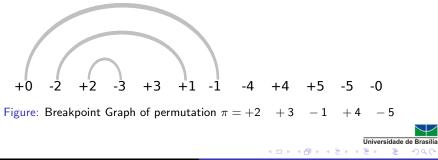
Definition (Breakpoint Graph)

The Breakpoint Graph $G(\pi)$ of a permutation π is a bi-colored graph with 2n + 2 vertices such that:

+0 -2 +2 -3 +3 +1 -1 -4 +4 +5 -5 -0
Figure: Breakpoint Graph of permutation
$$\pi = +2 + 3 - 1 + 4 - 5$$

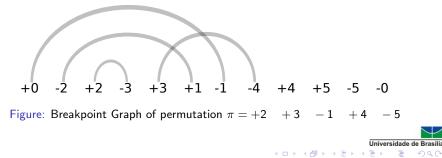
Definition (Breakpoint Graph)

The Breakpoint Graph $G(\pi)$ of a permutation π is a bi-colored graph with 2n + 2 vertices such that:



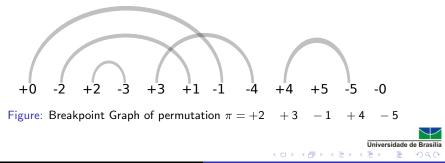
Definition (Breakpoint Graph)

The Breakpoint Graph $G(\pi)$ of a permutation π is a bi-colored graph with 2n + 2 vertices such that:



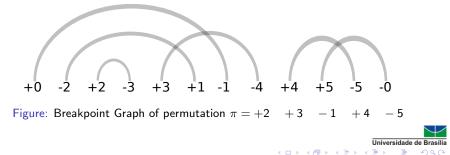
Definition (Breakpoint Graph)

The Breakpoint Graph $G(\pi)$ of a permutation π is a bi-colored graph with 2n + 2 vertices such that:



Definition (Breakpoint Graph)

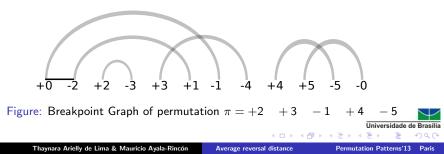
The Breakpoint Graph $G(\pi)$ of a permutation π is a bi-colored graph with 2n + 2 vertices such that:



Definition (Breakpoint Graph)

The Breakpoint Graph $G(\pi)$ of a permutation π is a bi-colored graph with 2n + 2 vertices such that:

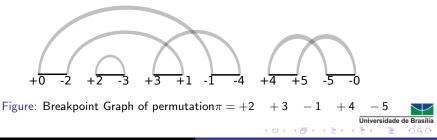
- i) there is a gray edge between vertices with labels +i and -(i + 1), $0 \le i < n$ and +n and -0;
- ii) there is a black edge between vertices with labels $+\pi_i$ and $-\pi_{i+1}, 0 \le i < n$ and $+\pi_n$ and π_{n+1} .



Definition (Breakpoint Graph)

The Breakpoint Graph $G(\pi)$ of a permutation π is a bi-colored graph with 2n + 2 vertices such that:

- i) there is a gray edge between vertices with labels +i and -(i + 1), $0 \le i < n$ and +n and -0;
- ii) there is a black edge between vertices with labels $+\pi_i$ and $-\pi_{i+1}, 0 \le i < n$ and $+\pi_n$ and π_{n+1} .



Breakpoint Graph Cycles in Breakpoint Graphs and cycles in permutations Our results

Reversal distance and Breakpoint Graphs

$$b(\pi)-c(\pi)\leq d(\pi)\leq b(\pi)-c(\pi)+1$$

where $b(\pi) =$ number of black edges in $G(\pi) = n + 1$ $c(\pi) =$ number of alternating cycles in $G(\pi)$ and $d(\pi) =$ reversal distance.

Finding the average number of reversals needed to sort permutations is equivalent to find the average number of alternating cycles in Breakpoint Graphs of all permutations of length n.

Plan:

Associate to each permutation π a specific permutation θ , such that the number of cycles in θ is related with the number of alternating cycles in Breakpoint Graph of π .

Breakpoint Graph Cycles in Breakpoint Graphs and cycles in permutations Our results

Cycles in Breakpoint Graphs and cycles in permutations

Given
$$\pi = \pi_1 \pi_2 \dots \pi_n$$

Associate $\pi^\circ = (+0 \pi_1 \dots \pi_n)(-\pi_n \dots - \pi_1 - 0)$
Fix $\gamma_n = (+0 - 0)(+1 - 1) \dots (+i - i) \dots (+n - n)$
 $\sigma_n = (+0 + 1 \dots + n)(-n \dots - 1 - 0)$
Note that $\gamma_n \pi^\circ = (+0 - \pi_1)(\pi_1 - \pi_2) \dots (\pi_j - \pi_{j+1}) \dots (\pi_n - 0)$
 $\gamma_n \sigma_n = (+0 - 1)(+1 - 2) \dots (+i - (i + 1)) \dots (+n - 0)$

Cycles in Breakpoint Graphs and cycles in permutations

For $\pi = +2 + 3 - 1 + 4 - 5$

$$\pi^{\circ} = (+0 + 2 + 3 - 1 + 4 - 5)(+5 - 4 + 1 - 3 - 2 - 0)$$

$$\gamma_5 \pi^\circ = (+0 \ -2)(+2 \ -3)(+3 \ +1)(-1 \ -4)(+4 \ +5)(-5 \ -0)$$

 $\gamma_5\sigma_5 = (+0 \ -1)(+1 \ -2)(+2 \ -3)(+3 \ -4)(+4 \ -5)(+5 \ -0)$

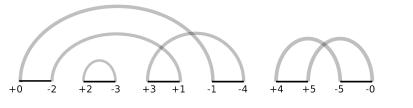


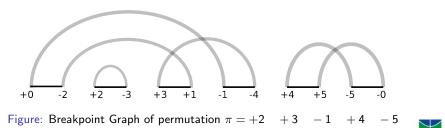
Figure: Breakpoint Graph of permutation $\pi = +2 + 3 - 1 + 4 - 5$

Cycles in Breakpoint Graphs and cycles in permutations

If the number of alternating cycles in $G(\pi)$ is k then the number of cycles in permutation $(\gamma_n \pi^\circ)(\gamma_n \sigma_n)$ is 2k.

For
$$\pi = +2 + 3 - 1 + 4 - 5$$

$$(\gamma_5 \pi^{\circ})(\gamma_5 \sigma_5) = (+0 - 4 + 1)(-1 - 2 + 3)(+2)(-3)(-0 + 4)(+5 - 5)$$



Our results

Theorem (T.A. de Lima & M.A. Rincón)

Given $1 \le k \le n+1$, the number of signed permutations π such that $c(G(\pi)) = k$ is equal to the number of products of n+1 cycles of length $2 \gamma_n \pi^\circ$ such that the product $(\gamma_n \pi^\circ)(\gamma_n \sigma_n)$ is a permutation with 2k cycles.

Breakpoint Graph Introduction Sorting signed permutations Conclusion Our results

$$A_{2} = \{\pi_{1} = +1 + 2, \pi_{2} = +1 - 2, \pi_{3} = -1 + 2, \pi_{4} = -1 - 2, \pi_{5} = +2 + 1, \pi_{6} = +2 - 1, \pi_{7} = -2 + 1, \pi_{8} = -2 - 1\}$$

 $GC(\pi_2)$

 $GC(\pi_5)$

 $GC(\pi_7)$

+0 $GC(\pi_6)$

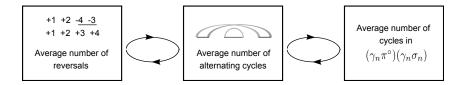
 $GC(\pi_4)$

 $GC(\pi_8)$

 $(\gamma_2 \pi_1^{\circ})(\gamma_2 \sigma_2) = (+0)(-1)(+1)(-2)(+2)(-0),$ $(\gamma_2 \pi_2^{\circ})(\gamma_2 \sigma_2) = (+0)(-1)(+1 - 0)(+2 - 2),$ $(\gamma_2 \pi_2^{\circ})(\gamma_2 \sigma_2) = (+0 - 2)(+1 - 1)(+2)(-0),$ $(\gamma_2 \pi_4^{\circ})(\gamma_2 \sigma_2) = (+0 + 2 - 2)(+1 - 0 - 1),$ $(\gamma_2 \pi_5^{\circ})(\gamma_2 \sigma_2) = (+0 + 2 + 1)(-1 - 2 - 0),$ $(\gamma_2 \pi_6^{\circ})(\gamma_2 \sigma_2) = (+0 - 0 + 1)(-1 - 2 + 2),$ $(\gamma_2 \pi_7^{\circ})(\gamma_2 \sigma_2) = (+0 - 2 - 0)(-1 + 2 + 1)$ and $(\gamma_2 \pi_2^{\circ})(\gamma_2 \sigma_2) = (+0 - 0)(-1 + 2)(+1)(-2).$

Introduction Breakpoint Graph Sorting signed permutations Cycles in Breakpoint Graphs and cycles in permutations Conclusion Our results

Finding the average number of alternating cycles in Breakpoint Graphs is equivalent to find the average number of cycles in permutations $(\gamma_n \pi^\circ)(\gamma_n \sigma_n)$ over all permutations π of length n.



Breakpoint Graph Cycles in Breakpoint Graphs and cycles in permutations **Our results**

Building a permutation of n + 1 elements

Consider a permutation $\pi = \pi_1 \dots \pi_n$.

One can build a permutation π' by inserting the element $\pi'_{i+1} = \pm (n+1)$ between two specific entries $\pi_i = a$ and $\pi_{i+1} = b$ of π .

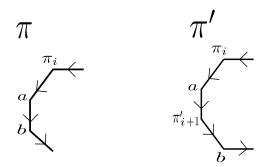


Figure: At left, the permutation $\pi = \pi_1 \dots \pi_i$ a $b \dots \pi_n$ and at right, the permutation $\pi' = \pi_1 \dots \pi_i$ a $\pi'_{i+1} \ b \dots \pi_n$.

 Introduction
 Breakpoint Graph

 Sorting signed permutations
 Cycles in Breakpoint Graphs and cycles in permutations

 Our results
 Our results

Notation

Denote as

 $c(\Gamma(\pi)) =$ number of cycles of a permutation π

$$(\gamma_n \pi^\circ)(\gamma_n \sigma_n) = \theta$$

$$(\gamma_{n+1}\pi'^{\circ})(\gamma_{n+1}\sigma_{n+1})=\theta'$$

Breakpoint Graph Cycles in Breakpoint Graphs and cycles in permutations **Our results**

< 🗇 🕨

Behavior of $c(\Gamma((\gamma_n \pi^\circ)(\gamma_n \sigma_n)))$

Proposition (T.A. de Lima & M.A. Rincón)

Let a, b, π and π' be as before, $\theta = (\gamma_n \pi^\circ)(\gamma_n \sigma_n)$ and $\theta' = (\gamma_{n+1} \pi'^\circ)(\gamma_{n+1} \sigma_{n+1})$. Thus $c(\Gamma(\theta')) =$ **a** $c(\Gamma(\theta)) - 2$,

2 c(Γ(θ)),

Paris

entreranque de Brasília

Breakpoint Graph Cycles in Breakpoint Graphs and cycles in permutations **Our results**

< 🗇 🕨

Behavior of $c(\Gamma((\gamma_n \pi^\circ)(\gamma_n \sigma_n)))$

Proposition (T.A. de Lima & M.A. Rincón)

Let a, b,
$$\pi$$
 and π' be as before, $\theta = (\gamma_n \pi^\circ)(\gamma_n \sigma_n)$ and
 $\theta' = (\gamma_{n+1} \pi'^\circ)(\gamma_{n+1} \sigma_{n+1})$. Thus $c(\Gamma(\theta')) =$
• $c(\Gamma(\theta)) - 2$, if
 $\begin{cases} a \text{ and } +n \text{ are not in the same cycle, } -b \text{ and } +n \text{ are not in the same cycle in } \theta; \end{cases}$
• $c(\Gamma(\theta))$,

3 $c(\Gamma(\theta)) + 2$,

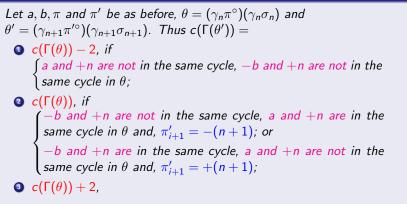
Paris

entreranque de Brasília

Breakpoint Graph Cycles in Breakpoint Graphs and cycles in permutations **Our results**

Behavior of $c(\Gamma((\gamma_n \pi^\circ)(\gamma_n \sigma_n)))$

Proposition (T.A. de Lima & M.A. Rincón)



Breakpoint Graph Cycles in Breakpoint Graphs and cycles in permutations **Our results**

Behavior of $c(\Gamma((\gamma_n \pi^\circ)(\gamma_n \sigma_n)))$

Proposition (T.A. de Lima & M.A. Rincón)

Let a, b,
$$\pi$$
 and π' be as before, $\theta = (\gamma_n \pi^\circ)(\gamma_n \sigma_n)$ and
 $\theta' = (\gamma_{n+1}\pi'^\circ)(\gamma_{n+1}\sigma_{n+1})$. Thus $c(\Gamma(\theta')) =$
• $c(\Gamma(\theta)) - 2$, if
 $\begin{cases} a \text{ and } + n \text{ are not in the same cycle, } -b \text{ and } + n \text{ are not in the same cycle in } \theta; \end{cases}$
• $c(\Gamma(\theta))$, if
 $\begin{cases} -b \text{ and } + n \text{ are not in the same cycle, } a \text{ and } + n \text{ are in the same cycle in } \theta \text{ and, } \pi'_{i+1} = -(n+1); \text{ or } -b \text{ and } + n \text{ are in the same cycle, } a \text{ and } + n \text{ are not in the same cycle in } \theta \text{ and, } \pi'_{i+1} = +(n+1); \end{cases}$
• $c(\Gamma(\theta)) + 2$, if
 $\begin{cases} -b \text{ and } + n \text{ are in the same cycle in } \theta \text{ and } \pi'_{i+1} = -(n+1); \text{ or } a \text{ and } + n \text{ are in the same cycle in } \theta \text{ and } \pi'_{i+1} = +(n+1). \end{cases}$

Breakpoint Graph Cycles in Breakpoint Graphs and cycles in permutations **Our results**

Recurrence formula for the average

Lemma (T.A. de Lima & M.A. Rincón)

Denote as:

- *P_i*, 1 ≤ *i* ≤ 3 the probability that the item *i* in previous proposition occurs;
- a_n the average number of cycles in permutations $(\gamma_n \pi^\circ)(\gamma_n \sigma_n)$, $|\pi| = n$.

So,

$$\mathbf{a}_{n+1} = P_1(\mathbf{a}_n - 2) + P_2\mathbf{a}_n + P_3(\mathbf{a}_n + 2)$$

Breakpoint Graph Cycles in Breakpoint Graphs and cycles in permutations **Our results**

Recurrence formula for the average

By mathematical computations

$$\mathbf{a}_{n+1} = P_1(\mathbf{a}_n - 2) + P_2\mathbf{a}_n + P_3(\mathbf{a}_n + 2) \\ = \mathbf{a}_n + \frac{3}{n+1} \sum_{i=-n}^{+n} P(\mathcal{A}_{+n}^i) - 2$$

where $P(A_{+n}^{j})$ is the probability that the event "given a = j, a and +n are in the same cycle" occurs.

To obtain or estimate the average number of cycles in θ , and consequently the average number of alternating cycles in $G(\pi)$, the expression $\sum_{i=-n}^{+n} P(\mathcal{A}_{+n}^{j})$ should be either solved or bounded.

Breakpoint Graph Cycles in Breakpoint Graphs and cycles in permutations **Our results**

Computational experiments

n	1	2	3	4	5	6	7	8
+0	0	2	12	104	1072	13224	188624	3064000
-1	1	3	18	140	1384	16428	228248	3628960
+1	2	2	16	128	1280	15368	215072	3441248
-2		3	16	128	1280	15356	215024	3440336
+2		8	12	128	1272	15336	214736	3437856
-3			18	128	1284			
+3			48	104	1280	15336	214976	3440256
-4				140	1280		215072	3440832
+4				384	1072	15368	214736	3440256
-5					1384	15356		3440832
+5					3840	13224	215072	3437856
-6						16428	215024	
+6						46080	188624	3441248
-7							228248	3440336
+7							645120	3064000
-8								3628960
+8								10321920

Table: Frequency of occurrence of a and +n in the same cycle in A_n°

Breakpoint Graph Cycles in Breakpoint Graphs and cycles in permutations **Our results**

Computational experiments

Table: Average number of cycles in $(\gamma_n \pi^\circ)(\gamma_n \sigma_n)$, for $1 \le n \le 9$.

a ₁	a ₂	a ₃	a ₄	a 5	<i>a</i> ₆	a ₇	<i>a</i> 8	ag
3	3,25	3,5	3,6875	3,85	3,9891	4,1119	4,2214	4,3205

Table: Average number of reversal distance, for $1 \le n \le 9$.

d_1	0,5 or 1,5
<i>d</i> ₂	1,375 or 2,375
<i>d</i> ₃	2,25 or 3,25
<i>d</i> ₄	3,15625 or 4,15625
d_5	4,075 or 5,075
d_6	5,00545 or 6,00545
d ₇	5,94405 or 6,94405
<i>d</i> ₈	6,8893 or 7,8893
d ₉	7,83975 or 8,83975

Conclusion

- Genome rearrangement is an important tool to study mutations in live organisms and, consequently, reconstruction of evolutionary chains;
- The average number of *operations* needed to sort permutations is an important problem, because this average shows the quality of approximate solutions;

Conclusion

For unsigned permutations:

Perm. length	[JGJM13]	Average (%)
10	5,810	58,10
20	12,940	64,70
30	20,589	68,63
40	28,254	70,64
50	36,291	72,58
60	44,633	74,39
70	52,949	75,64
80	60,887	76,11
90	69,555	77,28
100	78,096	78,10
110	86,702	78,82
120	95,258	79,38
130	104,582	80,45
140	113,539	81,10
150	122,671	81,78

Table: Average number of reversals using a set of 100 permutations (Table of [JGJM13])

- We transform a graph problem (finding the average number of alternating cycles in a graph) into an algebraic problem (finding the average number of cycles in (γ_nπ[°])(γ_nσ_n));
- We obtain the recurrence formula for the average number of cycles in (γ_nπ[°])(γ_nσ_n)):

$$a_{n+1} = a_n + \frac{3}{n+1} \sum_{i=-n}^{+n} P(\mathcal{A}^{j}_{+n}) - 2$$

• Consequently, we obtain an expression for average number of reversals needed to sort signed permutations.

Universidade de Bra

Future work

- Obtain or estimate the expression $\sum_{i=-n}^{+n} P(\mathcal{A}_{+n}^{j});$
- ⇒ This way, obtain or estimate the average number of reversals needed to sort signed permutations;
 - Study the average number of reversals needed to sort unsigned permutations.

Universidade de Bra

References

A.E.Darling, I. Miklós & M.A.Ragan.

Dynamics of Genome Rearrangement in Bacterial Populations.

PLoS Genetics, 4(7): e1000128, 2008.

J.L. Soncco-Álvarez, G.M. Almeida, J. Becker & M. Ayala-Rincón.

Parallelization and Virtualization of Genetic Algorithms for Sorting Permutation by Reversals.

Preprint submitted to NaBIC 2013 .

J.P.Doignon & A.Labarre.

On Hultman numbers.

Journal of Integer Sequences 10. Article 07.6.2, 2007.

M. Bóna & R. Flynn.

The average number of block interchanges needed to sort a permutation and a recent result of Stanley.

Information Processing Letters. pages 927-31, 2009.

Universidade de B

P. Pevzner & G. Tesler

Genome Rearrangements in Mammalian Evolution: Lessons from Human and Mouse Genomes.

Genome Research Journal, 13:37-45, 2003.

Z.Dias & J.Meidanis.

Rearranjo de Genomas: Uma coletânea de Artigos.

Tese de Doutorado, Instituto de Computação, UNICAMP, 2002.

Thank you!

thaynaradelima@gmail.com

Thaynara Arielly de Lima & Mauricio Ayala-Rincón Average reversal distance